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Abstract. We have recently published our experimental results on the resistivity (ρ) and on the
absolute thermoelectric power (S) of liquid germanium. We complete the first paper by presenting
improved theoretical calculations taking into account the generalized gradient approximation
(GGA) with more recent exchange and correlation contributions. The principal purpose of this
paper is to interpret the temperature dependence of the resistivity and of the thermopower of liquid
germanium which are very sensitive physical properties. Earlier works have to our knowledge never
treated rigorously the temperature dependence of the electronic transport properties. In the present
paper we recalculate the muffin tin potential at each temperature using very accurate experimental
pair correlation functions (available only for a few metals). We show that the increase in the
atomic distance with the temperature rise changes the whole muffin tin potential and explains the
temperature dependence of the electronic transport properties.

1. Introduction

The transition from the solid semi-conductor state to the metallic state at the melting point is
accompanied by a volume contraction of about 5% [2]. The local order of the liquid germanium
(6.8 nearest neighbours) is more compact than that of the crystalline state (four nearest
neighbours) but less than normal liquid metals (≈11 nearest neighbours). Due to the lack
of an accurate experimental structure factor and pair correlation function, electronic transport
properties are very often calculated using the hard sphere structure factor, which is very different
from the experimental one for liquid germanium. Our ‘ab initio’ calculations [1] have been
improved. We take into account a more recent expression of the exchange and correlation
contribution proposed by Perdiew and Wang [3] (PW91) which has been used in this work
simultaneously with another recent contribution of Perdiew, Burke and Ernzerhof [4] (PBE).
We show that these contributions improve the calculated transport properties. The present
paper is mainly devoted to discussing the temperature dependence of the resistivity and of the
thermopower. When the temperature rises, the atomic volume changes. This is taken into
account explicitly both in the prefactor of the resistivity and in the normalization term of the
t matrix. A consequence is the modification ofkF and ofEF which also appears explicitly
in the resistivity and in the thermopower formula. However, when the temperature rises, the
distance between atoms increases. The construction of the muffin tin potential depends from
the distances of the neighbours through the pair correlation function used in weighting the
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superposition of neighbouring potentials. Thus it is necessary, as the temperature is changed,
to recalculate the muffin tin potential and the energy dependent phase shifts ateach temperature.
This needs the knowledge of an accurate (experimental or calculated) pair correlation function
at each temperature. This calculation has never been done to our knowledge before. In
section 2 we first recall very briefly the principal formula of the resistivity and thermopower.
In section 3 we make explicit the modification to earlier calculations and present our new
improved resistivity and thermopower calculations. Finally in section 4 we calculate and
discuss the resistivity and thermopower temperature coefficients.

2. Theory

2.1. Expression of the resistivity and thermopower

We interpret the electrical resistivity of a normal metal as a function of the energyE and
wavevectork following a scheme described by Makradiet al [1] using the Ziman [5] formula,
which can be written:

ρ(E) = 3π m2
e�0

4e2h̄3k6

∫ 2k

0
a(q)|t (q, E)|2q3 dq (1)

where�0 is the atomic volume,k andE are related byE = h̄2k2/2me (following the approach
of Espositoet al, which will be discussed in section 2.3),q is the transfer wavevector,a(q) is
the structure factor,t (q, E) is thet matrix expressed in term of phase shifts [6, 7]

t (q, E) = − 2πh̄3

m
√

2mE�0

∑
l

(2l + 1) sinηl(E) exp(iηl(E))Pl(cosθ) (2)

wherePl(cosθ) are the Legendre polynomials andθ is the angle between the incident
and scattered wavevector. The phase shiftsηl(E) are calculated from muffin tin potentials
determined following the method of Mukhopadhyayet al [8]. Different exchange–correlation
potentials, added to the electrostatic Coulomb part, were used in the construction of the muffin
tin potential. If the energy-dependent phase shifts are known, this approach gives an energy-
dependent resistivity and permits the calculation of the thermopower as follows:

S(E) = −π
2k2
BTK

3|e|E χ with χ = −
[
∂ ln ρ(E)

∂ lnE

]
(3)

where kB is the Boltzmann constant,TK the absolute temperature in Kelvin andχ the
dimensionless thermoelectric parameter. To compare to the experiment it is necessary for
the resistivity, the thermopower and the thermoelectric parameter to take their values atEF .
The thermoelectric parameter can also be written:χ = 3− 2α − β/2, where the expressions
of α andβ can be found in the paper of Vinckelet al [9].

2.2. Muffin tin potentials

The phase-shifts are calculated from muffin tin potentials. The construction procedure has
been given by Mattheiss [10] for solids and has been adapted to (disordered) liquid metals
by Mukhopadhyayet al [8]. The atomic environment is introduced by the experimental or
theoretical pair correlation functiong(r) as described by Makradiet al [1]. The potentials used
in this work derive from the density functional theory (DFT). The DFT [11, 12] is the basis of
current research on the electronic properties of condensed matter [13] and is widely used in
studies of molecules and other finite systems [14, 15]. During the last two decades [15] the local
density approximation (LDA) has been used successfully to calculate the structural properties
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of solids, including the stability, lattice constant, bulk moduli and phonon spectra. In the limit
of slowly varying density, the homogeneous electron gas can replace the full electron system,
and the LDA is a very good approximation. Makradiet al [1] show that this theory gives also
good results for the liquid phase. The overestimation of binding energy of molecules or solids
and the underestimation of the gap in insulators and bond lengths are well known deficiencies
of the LDA that limit its further application [15]. The valence bandwidth narrowing in free-
electron-like metal systems was not reproduced by using the LDA approach [16] because of
inhomogeneous correlation effects. Recently these effects were discussed in the literature with
simple recipes for correcting the LDA [17]. A generalized gradient approximation (GGA) for
the exchange–correlation functional with explicit dependence on the gradient of charge density
[18–21] in the DFT extends the practical implementation of DFT to inhomogeneous systems.
Computationally it is simple to extend the LDA functional to a GGA non-local functional with
simple calculations of the density. Calculations with:

• the functional of Perdiew and Wang (PW86) [19],
• Becke’s exchange [21] plus Perdiew’s correction (BP) [20],
• the recent functional of Perdiew and Wang (PW91) [3],

have been tested [22]. The superiority of the GGA with respect to the LDA is not clear when
it is applied to solids. Sometimes the GGA reproduces well the experimental phenomena; in
other cases the GGA overcorrects the LDA results. In this paper we also consider the simplified
version of the GGA functional by Perdiewet al [4] (PBE) which satisfies many exact properties
of DFT. The indicated major improvements over PW91 are the accurate description of the linear
response of the uniform electron gas, proper uniform scaling and smoother potentials [4].

2.3. Fermi energy

To determine the resistivity and thermopower at the Fermi energy different methods have been
discussed in [1]. The Fermi energy calculation used in this work was that proposed by Esposito
et al [23]. The position ofEF , with respect to the scattering muffin tin zero potential, depends
on the shape of the density of statesN(E) which has been determined following Lloyd’s
[24] method. Espositoet al [23] introduced the number of conduction electrons per atomNC
(effective valence) which is different from the valenceZ. The Fermi energy is obtained by
filling the density of state curve byZ electrons per atom. The Fermi wavevectorkF is obtained
fromEF ; NC is obtained fromkF . All details can be found in [1].

3. Resistivity and thermopower as function of energy

New calculated resistivities and thermopowers are obtained with the simple LDA and the
two GGA corrections proposed by Perdiewet al [3, 4]. In this calculation, the first and
second gradient of the electronic density, which appears in the GGA approximation of the
correlation–exchange potential, are calculated self-consistently. At each iteration, after solving
the Schroedinger equation we calculate the (first and second) gradient of the corresponding
electronic density. This density will be introduced in the correlation–exchange potential used
in the following iteration. In the earlier calculations of Makradiet al [1] the electronic density
has been calculated by using the Clementi [25] partial wave functions.

In this section, the calculations are made using only the very accurate experimental
structure factor given by Bellissent-Funel and Bellisent [26] measured with a 640-cell neutron
multidetector. In figure 1 we present the energy dependence of the resistivity calculated
with the different exchange–correlation potentials. The general behaviour of all curves is the
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Figure 1. Energy dependence of the electrical resistivity of liquid germanium. Calculations
were made at 950◦C using the local density approximation (LDA) and the generalized gradient
approximation of Perdiew and Wang (GGA-PW91) and Perdiew, Burke and Ernzerhof (GGA-PBE).

same as those of Makradiet al [1]‡, thus in figure 1 we show just the part around the Fermi
energy. The present calculations give better results for the resistivity; all curves move at higher
resistivities than our earlier calculations. The values atEF are reported in table 1. The GGAs
are introduced by the PW91 and PBE exchange–correlation approximations to consider the
inhomogeneity of the electronic density.

The GGA-PW91 calculation gives the best result with 63.67µ� cm at 0.8416 Rydberg
while the GGA-PBE approximation gives 56.21 µ� cm. GGA-PW91 is very close to the
experimental result of 67.97 µ� cm. The LDA value of 62.55 µ� cm is between the two
GGA approximations. The superiority of GGA with respect to LDA is not as clear for the
liquid (germanium) state as for solids.

Considering the thermopower, the calculated values obtained with all the approximations
of the density functional theory are very close to Makradi’s values [1]. The differences between
them are very small and do not exceed 0.05µV K−1. The average value is about−1.86µV K−1.
The curves have the same behaviour than those of [1]; thus we represent in figure 2 the values of
the thermopower on an expanded scale near the Fermi energy. The calculated thermopowers are

‡ A small error in LDA calculation has been corrected in the present work.
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Table 1. Fermi energyEF , effective number of conduction electronsNC , resistivityρ(EF ) and
thermopowerS(EF ) of liquid germanium. Calculations were made with the DFT approach for
different correlation and exchange terms (LDA, GGA-PW91 and GGA-PBE).

Germanium EF ρ(EF ) S(EF )

950◦C (Rydberg) NC (µ� cm) (µV K−1)

LDA 0.8451 3.894 62.55 −1.85
GGA-PW91 0.8416 3.870 63.67 −1.89
GGA-PBE 0.8588 3.989 56.21 −1.84
Experimental 67.98± 0.30 [1]

resistivity
(µ� cm)

Experimental −0.23± 0.40 [1]
thermopower
(µV K−1)

less than 1.5µV K−1 from the experimental values which can be considered as very good (for
the thermoelectric power which takes positive or negative values, the accuracy of measurements
and calculations has to be compared in absolute terms and not as a percentage). All calculations
underestimate the experimental thermopower and the differences are not significant. In this
case we cannot say that the superiority of GGA is clearly demonstrated for thermopower
calculations of liquid germanium.

4. Temperature dependence

4.1. General considerations

The different contributions for the temperature dependence of the electronic transport
properties have been taken into account by several authors [5, 27–29]. A quantitative theoretical
discussion of the temperature coefficient was first given by Dreirachet al [6]. In their recent
paper Rhaziet al [30] discussed qualitatively the effect of the temperature on each factor in the
Ziman formula. In the present work we use anab initio method by calculating the scattering
of electrons (phase shifts) by muffin tin potentials. Nobody to our knowledge has discussed
the temperature dependence by reconstructing the muffin tin potential at each temperature. It
is the aim of this paper to do it. This calculation is possible for liquid germanium which is one
of the scarce liquid metals for which accurate pair correlation functions have been determined
at different temperatures.

The important success of Ziman [5] was that his theory could explain roughly and
qualitatively the electronic transport properties of alkaline metals (Ziman [5]), of polyvalent
metals (Bradleyet al [27]) and of normal metallic alloys (Faber and Ziman [28]) using the
pseudopotential theory. Noble metals (Evanset al [29]) and alloys of noble and transition
metals (Dreirachet al [6]) were treated with thet matrix approach. Ziman’s theory explains
qualitatively the decrease of the resistivity with temperature for liquid zinc and for binary alloys
at the mean valence of 1.8. The explanation comes from the temperature dependence of the
structure factor near the main peak. This main peak region is heavily weighted by aq3 factor
because the limit of integration 2kF is near the maximum of the first peak of the structure factor
for the mean valency of 1.8. Nevertheless the temperature dependence which is very sensitive
to the theoretical model was not well treated from a quantitative point of view. Ziman [31], in
his review article at the first liquid metal conference, compared the experimental temperature
coefficient at constant pressure to a calculated one at constant volume. He discussed a reduced
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Figure 2. Energy dependence of the thermopower of liquid germanium. Calculations were made
at 950◦C using the local density approximation (LDA) and the generalized gradient approximation
of Perdiew and Wang (GGA-PW91) and Perdiew, Burke and Ernzerhof (GGA-PBE).

temperature coefficient introduced by Greenfield and explains that the good agreement with
the experiment in the reduced temperature coefficient is not fortuitous because the effect due
to the expansion is compensated. The temperature coefficient of the thermopower was not
discussed in his paper. Waseda and Suzuki [32] determined the experimental structure factor
of liquid mercury and obtained good results with the pseudopotential of Evans [33]. Evans
[34] determined the temperature dependence of the resistivity and thermopower for some
polyvalent metals (In, Cd, Te, Pb and Hg). He takes into account the experimental structure
factor, the change in the atomic volume and its influence on the dielectric screening function,
but he assumes that the bare potential of the ion does not change with density. Minooet al
[35] proposed a simple phenomenological structure factora(q) for liquid alkali metals and
used it to calculate the temperature coefficient of the resistivity at constant volume. The form
factor was obtained in the framework of the empty-core model [36], the empty-coreRC radius
was adjusted to reproduce the experimental resistivity at melting. Bellissent-Funelet al [37]
determined very accurately the experimental structure factor of liquid gallium between 303 and
573 K. They fit the unique Ashcroft [38] parameterRC on the experimental resistivity using
the Ziman formula. They showed thatRC , thus the bare potential, was temperature dependent.
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More recently Saritaet al [39] determined the temperature dependence of the electronic
transport properties. They took into account the temperature dependence of the structure factor,
which was determined theoretically on the basis of the knowledge of the experimental structure
factor at one temperature. For this it is necessary to use the ‘Debye temperature’ treated as
a parameter. The form factor was determined by a ‘first principles’ calculation with the non-
local optimized Shaw [40] model potential theory. As pointed out by Saritaet al, most (all?)
authors considered that the pseudopotential matrix elements remain unchanged on thermal
expansion. Saritaet al determined the form factor by taking into account the atomic volume
and kF appropriate to the temperature of investigation, but did not, as far we understand,
recalculate the absolute Fermi energy in order to determine the parametersAl(EF ) at each
temperature. In the Shaw model potential theory the parameters are calculated as a function
of energy relatively to an absolute energy scale (the energy to put an electron at infinity). This
energy is always obtained following a method derived from Animalu and Heine [41]. It is
necessary to introduce especially the mean ionization energy, the binding energy per valence
electron, the exchange and correlation energy of the free electron gas. Ballentine and Gupta
[42], Ese and Reissland [43] and Cowley [44] have developed different methods of calculating
the Fermi energy, but nobody to our knowledge determined the absolute Fermi energy as a
function of temperature.

Our approach is different but follows the same philosophy, i.e. it is necessary to determine
at each temperature the energy dependent parameters, which describe the scattering. In our
approach we use thet matrix expression as a function of energy dependent phase shifts at the
place of pseudopotential form factors with energy dependent parameters. However the energy
is not related to the same origin. In thet matrix formulation the zero of energy is the muffin
tin zero potential. When the electron energy is lower than the muffin tin potential, the electron
cannot jump the potential barrier. When it is above the electron is scattered. The Fermi energy
is determined following the method described by Makradiet al [1]. It can be obtained as a
function of temperature more easily than in the pseudopotential approach. This is the aim of
the present work.

In the Ziman expression of the resistivity (formula (1)) and of the thermopower
(formula (3)) different temperature dependent parameters appear. The most important is the
atomic volume�0 determined from the mass density of the metal. We used the Crawley
[45] expression of the density, which is given as a linear function of the temperature. The
wavevectork that appears in the prefactor and in the upper integral limit is directly expressed
as a function of the atomic volume�0. The energy is expressed as a function of the wavevector.
The energy and the atomic volume appear explicitly in thet matrix expression (formula (2)).
The thermopower is proportional to the temperature and to the thermoelectric parameterχ

and inversely proportional to the energy. The thermoelectric parameterχ is expressed as a
function of the resistivity integral (termα) and of an integral, in which appears the derivative
of thet matrix with regard toE (termβ) [9].

It is relatively easy to take into account the temperature dependence of the mass density,
thus the atomic volume, thus the wavevector, thus the energy, thus thet matrix. The structure
factor can also be calculated as a function of temperature. For example the hard sphere structure
factor depends on the density (given by Crawley) and on the packing fraction (given by Waseda).
One can also use, if available, the experimental structure factor at two temperatures. Such a
kind of calculation has even been done before. However the phase shifts have always been
determined at one temperature only and have been used at another one. Sometimes the phase
shifts have been determined as a function of energy. It is then possible to use the phase shifts at
the energy corresponding to the temperature. Such calculations have even been done in earlier
works of our laboratory.
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Figure 3. Energy dependence of the electrical resistivity of liquid germanium at 950 and 1200◦C
with the experimental structure factor and pair correlation function. Calculations were made using
the local density approximation (LDA). Curve a is constructed using the experimental structure
factor at 950◦C; the muffin tin potential is constructed from the experimental pair correlation
function at 950◦C. Curve b is constructed using the experimental structure factor at 1200◦C;
the muffin tin potential is constructed from the experimental pair correlation function at 1200◦C.
Curve c is constructed using the experimental structure factor at 1200◦C, but the muffin tin potential
(hence the energy dependent phase shifts) is the same that at 950◦C.

However there is an important temperature contribution which has never been studied
before to our knowledge. Indeed, when the temperature rises, the liquid metal expands and
the whole muffin tin potential is modified because of the superposition of the neighbouring
atomic potentials, the distance between them being greater. This has an important influence
on the phase shifts versus energy curves, thus on the resistivity and thermopower versus
energy curves. Such calculations are possible, but very precise experimental pair correlation
functions at different temperature are scarce. In the case of liquid germanium, Bellisent-Funel
and Bellissent [26] have calculated pair correlation functions by a Fourier transform of their
accurate structure factors measured over a wideq range at two temperatures. They provide us
with their experimental data. We use their experimentala(q) to determine the resistivity and
thermopower versus energy at two temperatures.

4.2. Resistivity coefficients

In figure 3 we represent on an expanded scale three resistivity versus energy curves calculated
using the experimental structure factor in the Ziman formula and the experimental pair
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Figure 4. Energy dependence of the electrical resistivity of liquid germanium at 950 and 1200◦C
with the hard sphere structure factor and pair correlation function. Calculations were made using the
local density approximation (LDA). Curve a is constructed using the hard sphere structure factor
at 950◦C; the muffin tin potential is constructed from the hard sphere pair correlation function
at 950◦C. Curve b is constructed using the hard sphere structure factor at 1200◦C; the muffin
tin potential is constructed from the hard sphere pair correlation function at 1200◦C. Curve c is
constructed using the hard sphere structure factor at 1200◦C, but the muffin tin potential (hence
the energy dependent phase shifts) is the same that at 950◦C.

correlation functiong(r) (Waseda) in the muffin tin potential construction. The first curve
is obtained by determining the phase shifts using theg(r) at 950◦C. Evidently the resistivity
ρ(E) is calculated using the structure factor at the same temperature. The resistivity at 950◦C
is represented by point 1 indicated on the curve a)a(q) 950◦C, ηl 950◦C (which means that
the structure factora(q) is taken at 950◦C in Ziman’s formula and that the phase shiftsηl have
been constructed using the experimental pair correlation functiong(r) measured at 950◦C).
Its value is 62.55 µ� cm. The first approximation is to take only into account the change
in density, wavevector and energy; we obtain point 4 on the same curve a). The resistivity
is 65.11 µ� cm. The temperature coefficient is 10.22 n� cm K−1 to be compared to our
experimental value of 16.6 n� cm K−1. Another inexact approximation consists of taking
into account only the structure factor change and not the effect of the density, and ofkF and
EF . We obtain point 5 with a resistivity of 60.76µ� cm on the curve c)a(q) 1200◦C, ηl
950◦C. The resistivity temperature coefficient is now−7.2 n� cm K−1 which is negative. To
increase the correctness of the calculation, we can use in the Ziman formula the experimental
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Figure 5. Energy dependence of the thermopower of liquid germanium at 950 and 1200◦C with
the experimental structure factor and pair correlation function. Calculations were made using the
local density approximation (LDA). Curve a is constructed using the experimental structure factor
at 950◦C; the muffin tin potential is constructed from the experimental pair correlation function
at 950◦C. Curve b is constructed using the experimental structure factor at 1200◦C; the muffin
tin potential is constructed from the experimental pair correlation function at 1200◦C. Curve c is
constructed using the experimental structure factor at 1200◦C, but the muffin tin potential (hence
the energy dependent phase shifts) is the same that at 950◦C.

structure factor at the temperature of 1200◦C and the change in�0, kF andEF . The resistivity
is 63.36µ� cm and is represented by point 3 on the curve indicated c)a(q) 1200◦C,ηl 950◦C.
The temperature coefficient of the resistivity is now 3.2 n� cm K−1 with a theoretically more
exact approach.

These results show clearly that contrary to what has been written in older papers the
structure factor effect is not the predominant contribution and that the change inkF resulting
from the density is more important than the structural effect. Finally we recalculate the phase
shifts at a different temperature. This gives us the curve indicated b)a(q) 1200◦C,ηl 1200◦C.
The resistivity at the Fermi energy is 69.91 µ� cm and is represented by point 2 on the
curve b). The temperature coefficient is now 29.4 n� cm K−1. It is clear from these results
that to compare experience and theory it is absolutely necessary to recalculate the phase shifts
at each temperature. Of course the calculated value is not fully satisfactory, the result with
point 4 is nearer the experimental value, but it has been obtained with a wrong method of
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Table 2. Different temperature coefficient of the resistivity and of the thermopower. Points 1, 2,
3, 4 and 5 have the same meaning as in figures 3, 4, 5 and 6.(

∂ρ

∂T

) (
∂ρ

∂T

) (
∂S

∂T

) (
∂S

∂T

)
Experimental Hard sphere Experimental Hard sphere

Germanium structure factor structure factor structure factor structure factor
950◦C in n� cm K−1 in n� cm K−1 in nV K−2 in nV K−2

Calculation with 10.2 3.9 0.77 −0.09
atomic volume
dependence
(points 1 and 4)

Calculation with −7.2 2.8 −1.24 −1.00
structure factor
dependence
(points 1 and 5)

Calculation with 3.2 6.0 −0.41 −0.63
atomic volume and
structure factor
dependence
(points 1 and 3)

Complete calculation 29.4 56.2 −1.16 −5.59
(points 1 and 2)

Experimental 16.6 [1] 16.6 [1]
resistivity temperature
coefficient

Experimental −0.83 [1] −0.83 [1]
thermopower
temperature coefficient

calculation. This put serious doubt on earlier results, which sometimes are fortuitously near
the experimental value.

The lack of experimental structure factors has often led physicists to make calculations
with theoretical structure factors like the hard sphere structure factors. However it is necessary
to use a temperature dependent hard sphere diameterσ . Gasseret al [46] have discussed
the temperature dependence of the hard sphere diameter. In the present work we used the
germanium hard sphere structure factor given by Waseda at 950◦C and extended by 1200◦C
by the Protopapas [47] formula. We do not discuss the resulting electronic transport properties.
The reader can find all the quantitative information in figure 4 and in table 2. It is clear that
the hard sphere structure factors cannot be used for liquid germanium.

4.3. Thermoelectric power coefficients

We present in figure 5 the thermoelectric power as a function of energy on a very expanded
scale calculated with the experimental structure factor and correlation pair function. Here
again we can calculate the temperature dependence by making several assumptions.

The thermopower is determined with a unique set of phase shifts versus energy:

• we take into account the volume dependence alone (points 1 and 4 on curve a)),
• we take into account the structure factor alone (points 1 and 5 on curve c)),
• we take into account both the volume and structure factor dependence (points 1 and 3 on

curve c)),
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Figure 6. Energy dependence of the thermopower of liquid germanium at 950 and 1200◦C with
the hard sphere structure factor and pair correlation function. Calculations were made using the
local density approximation (LDA). Curve a is constructed using the hard sphere structure factor
at 950◦C; the muffin tin potential is constructed from the hard sphere pair correlation function
at 950◦C. Curve b is constructed using the hard sphere structure factor at 1200◦C; the muffin
tin potential is constructed from the hard sphere pair correlation function at 1200◦C. Curve c is
constructed using the hard sphere structure factor at 1200◦C, but the muffin tin potential (hence
the energy dependent phase shifts) is the same that at 950◦C.

• the thermopower is determined with a temperature dependence of the volume, of the
structure factor and the phase shifts are calculated at each temperature (points 1 and 2 on
curve b)).

We can here consider in table 2 that the best approachgives also the best result.
As for the resistivity the calculations have also been made with hard sphere structure

factors. All results are reported in figure 6 and table 2. It is clear that for hard sphere the
best theoretical calculation gives a very bad result and that fortuitously an inexact calculation
gives reasonable results. The hard sphere model does not describe satisfactorily the electronic
transport properties.
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5. Conclusion

Until now, the temperature coefficients of the transport properties have been calculated by
making different approximations:

• temperature dependent atomic volume (hence temperature dependentkF andEF ),
• temperature dependent structure factor,
• temperature dependent atomic volume and structure factor.

In the present work we add a new set of phase shifts derived from amuffin tin potential
reconstructed at each temperature. It is clear from table 2 that this effect is very important and
can no longer be neglected for every temperature dependent property. With this method we
can see that the hard sphere structure factor does not allow us to construct a realistic muffin
tin potential for liquid germanium. The complete calculation overestimates the temperature
coefficient of the resistivity while the temperature coefficient of the thermopower can be
considered as well described by this new approach. It is now clear that an accurate calculation
of the temperature coefficient needs an accurate experimental pair correlation function and
that this new contribution to the temperature coefficient of the resistivity is quantitatively as
important, if not more, than the volume dependence or (and) the structure factor dependence.
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